SkySonde Client Plugin System Documentation

Version 1.1, October 12th, 2021
Allen Jordan, allen.jordan@noaa.gov

SkySonde Client has support for adding external instrument plugins written by users. This
allows new instruments to be attached to an iMet-1-RSB radiosonde (following the XDATA
protocol) and their data will be collected, displayed, and stored with the other radiosonde fields

in a CSV file. Any available plugins will be displayed on the configuration screen for
enabling/disabling and setup fields:

SkySonde Client Configuration 1.1.7.7 lil_lﬂ

F-

Instrument Plugins Available (check to enable instrument):

[@l] Anasphere SLWC
7| ETH COBALD

[] NOAA Valve Cutter ‘
[] MetOne OPC
[] Ozone Maotor RPM Monitor

[| »

1

SLWC Configuration
[] Packets at half frequency, muttiphy by 2

Multiple Instruments Configuration

Daisy Chain Index: Any -

|.P|n instrument from Anasphere that measures the supercooled liquid water content in clouds
Factony Defaults

Figure 1: Other Instruments tab in SkySonde Client, showing the plugin instruments available.

e

Creating a New Plugin

Project Initialization

To create a custom instrument plugin, use Visual Studio 2019 or later. The free “Community”
edition works fine:

https://visualstudio.microsoft.com/downloads/

Also check that the latest SkySonde Client is installed from the NOAA OZWV website:

https://gml.noaa.gov/ozwv/wvap/sw.html

The following instructions are written for Visual Studio 2019 (though some screenshots are
from older versions) with the .NET Framework 4.7.2 target framework. You can find example
source code for creating a plugin here:

https://gml.noaa.gov/aftp/user/jordan/AllenTestPlugin.zip

| recommend modifying this example project to build a new plugin. Alternatively, to create a
new plugin from scratch first start a new C# project in Visual Studio and choose the “Class
Library (.NET Framework)” option. Any project name will work. Under the “Configure your new
project” page that appears next, change the “Framework” to “.NET Framework 4.7.2". Ifit’s
not available, you will need to first install the “Developer Pack” version of this framework from
here and restart Visual Studio:

https://dotnet.microsoft.com/download/dotnet-framework/net472

From the Solution Explorer, right-click on “References” and choose “Add Reference...”. Click
the “Browse...” button on the bottom right and navigate to SkySonde Client’s installation folder
(usually “C:\Program Files (x86)\SkySonde Client”). Now open the “Plugins” folder, select
“PluginReference.dll”, and press the “Add” button:

| }

Settutensions Reference Manager - testpluginklah |. ? 2
4 Assemblies Targeting: .NET Framework 4.5 Search Assemnblies (Ctrl+E) 2 -
Framework Name Version S Name
Extensions 1} Accessibility 4.0.00 Accessibility
. CustornMarshalers 4.0.0.0 Created by:
. b Solution IsvmWranoer 4,000 . Microsoft Corporation
Select the files to reference... Iﬁ Version:
4000
'_ : Seoih Pl \ File Version:
@‘\.J" « 0S(C) b Program Files (x86) » SkySonde Client » Plugins ~ [44| [search Plugins o 403031918020 buit by
FX45RTMGDR
Organize » MNew folder =~ [@
=
= Mame Date modified Type Size
- Faverites - e " 3
& Allen Jord % DefaultPlugins.dil 1/21/201612:06 PM Application extens... 43 KB
en Jordan 5 5 =
o % PluginReference.dll 1/21/2016 11:59 AM Application extens... 16 KB
esktop
& Downloads
5| Recent Places
L Google Drive
. Projects
4 Libraries ‘
3 Documents
@l Git
& Music 1=
=) Pictures
=l Subversion | Browse... | [oK | [Cape|
E Videos
18 Computer
K o5
S aftp (\wnx?) (W -
File name: PluginReference.dll - [COV’”PD"E"t Files (*.dI*.tlb;*.0l v]
[Aga |+ [cancel |

We will also need the System.Windows.Forms reference, available from the “Assemblies-
>Framework” area of the Reference Manager. Press “OK” to close the Reference Manager
dialog and you should now see “PluginReference” added to the project’s list of references in
the Solution Explorer.

To code the plugin, use the “Class1.cs” file Visual Studio automatically generated for this
project. You can rename the file and class if needed. This class will extend the PluginBase class
from the PluginReference library we referenced earlier. The basic plugin class template looks
like this:

Slusing System;
using System.Collections.Generic;
using System.Lling;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using PluginReference;

—Inamespace AllenTestPlugin

= public class AllenTestPlugin : PluginBase

* The name of the plugin's instrument, to be shown in the GUI
2

override public string InstrumentMame { get { return "AllenTest"; } }

* A sentence or two describing the instrument in more detail.

override public string InstrumentDescription { get { return "A test instrument by Allen"; } }

* Create and return a Windows Forms Panel containing any setup/configuration/metadata controls required by the plugin instrument
o

= override public Panel GetConfigPanel()

: steanfisbansd

}
* after the user has finished entering config values in the GUI and pressed "OK", this method will be called.
* The plugin should parse its own config panel controls and store the results.

* [@param selectedDaisyChainIndex The user-selected daisy chain index for this instrument in case multiple duplicate instruments are attached.
%) A value of @ means to allow all daisy chain indices, no particular instrument has been selected so there is on

= override public void ParseConfigPanel{uint selectedDaisyChainIndex)

{
}

Plugin Configuration Control

Any setup information or metadata needed by your instrument will be collected in SkySonde
Client’s configuration dialog. You need to write a user control containing any fields required.
Start by adding a new User Control to the project, naming it something like PluginConfig.cs. |
start by placing a group box around the perimeter using the Windows Forms GUI designer,
anchoring it to all sides, and give it some text describing the instrument like “AllenTest
Configuration”. Then any fields needed by the instrument are added.

Every plugin instrument should also add the “MultiplelnstrumentsControl” user control to the
bottom of their configuration area. This will allow more than one of the same plugin
instrument to be attached to a single iMet, using a separate instance of SkySonde Client for
each (and selecting the specific daisy chain index with this user control). To see this control in
the Windows Forms designer, open the Toolbox and right-click in an unused area. Select
“Choose Items...” and click the “Browse...” button. Navigate to the same SkySonde Client
installation directory then the Plugins subdirectory and again select “PluginReference.dll” and
press “Open”. Now “MultiplelnstrumentsControl” should be selected in the “Choose Toolbox
Items” dialog. Press OK.

Find “MultipleInstrumentsControl” in the ToolBox and place it somewhere in the configuration
control area. The final configuration control should look something like this:

Allen Test Configuration

Serial Mumber:

Multiple Instruments Corfiguration o

Daisy Chain Index: Any - IHI

0
(m

Now go to the code view for this user control. You need to write properties to access each of
the controls:

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Drawing;

using System.Data;

using System.Lling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

namespace AllenTestPlugin

1
public partial class AllenTestConfig : UserControl
1
public int DaisyChainIndex
1
get { return multipleInstrumentsControll.DaisyChainIndex; }
set { multipleInstrumentsControll.DaisyChainIndex = value; }
¥
public string SerialNumber
1
get { return serialNumberTextBox.Text; }
set { serialNumberTextBox.Text = value; }
h
public AllenTestConfig()
1
InitializeComponent();
h
b
¥

Plugin Data View Control

We will also need a way to view incoming instrument data in real-time during a flight. Create a
new User Control in the same way as the configuration control made in the last section. Name
it something like “PluginDataView.cs”. | wrap a group box around everything and anchor it to

the sides again, making a nice border, and set the text to “Plugin Data” (using the instrument
name). My example looks like this:

AlenTest Data i
Temperature: n/a [deg C] |:|
Pressure: n/a [mb]

o u!

In the code view, we will need an UpdateData method and delegate, allowing SkySonde’s data
collection thread to safely update the GUI fields as packets are parsed. It should look
something like this:

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Drawing;

using System.Data;

using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Windows.Forms;

namespace AllenTestPlugin

1L
public partial class AllenTestDataView : UserControl
i
public AllenTestDataView()
1
InitializeComponent();
h
private delegate void UpdateDataDelegate(double temperature, double pressure);
public woid UpdateData(double temperature, double pressure)
1
if (this.InvokeRequired)
1
this.BeginInvoke(new UpdateDataDelegate(UpdateData), new object[] { temperature, pressure });
h
else
1
temperatureLabel.Text = string.Format("{@:@.88} [deg C]", temperature};
pressurelabel.Text = string.Format("{@:2.88} [mb]", pressure);
h
h
h
b

Note the use of Beginlnvoke to safely call the UpdateData method again on the GUI thread
instead of the data collection thread.

Writing the Plugin Code

The plugin code should contain instances of the configuration and data view controls we wrote
earlier, and member variables to store any metadata and packet data fields. It should also

contain a separate Panel for each user control, set to null. The top of the class should look like

this:

private AllenTestConfig configControl;

private Pane

o

1 configPanel = null;

private string serialNumber;
private int daisyChainIndex;

private
private

an

T I

m

T

nTestDataView dataViewControl;
1 dataViewPanel = null;

private double temperature, pressure;

The following override methods/properties need to be written for a plugin to work. Note that
the System.Xml and System.Xml.Ling namespaces should be included (with “using” statements)
at the top of the plugin class’ file for some of the methods below.

e [nstrumentName

O

The name of the plugin's instrument, to be shown in the GUI.

e InstrumentDescription

(@)

A sentence or two describing the instrument in more detail.

e GetConfigPanel

(@)

(@)

Create and return a Windows Forms Panel containing any
setup/configuration/metadata controls required by the plugin instrument.
When called for the first time, initialize the configPanel. For future calls, just
return the existing configPanel.

AutoSize is set so SkySonde can size it as needed

e ParseConfigPanel

O

(@)

After the user has finished entering config values in the GUI and pressed "OK",
this method will be called.
The plugin should parse its own config panel controls and store the results.

e GetDataViewPanel

O

Create and return a Windows Forms Panel for displaying real-time data from the
plugin's instrument. The ParsePacket method should update the panel's controls
as data comes in.

When called for the first time, initialize the dataViewPanel. For future calls, just
return the existing dataViewPanel.

DocStyle.Fill is used for docking the data view panel within SkySonde Client’s
plugin data window.

e QOutputRawconfigXML

O

Output XML elements using XmITextWriter's WriteElementString method for
saving any of the plugin instrument's metadata fields in the flight's rawconfig
file.

Use XMLWriter’s WriteElementString method to output each of your metadata
fields

Prefix your xml element names with the instrument name to keep them unique

e ParseRawconfig
o For reprocessing flights, this method should parse the rawconfig xml file to
restore any of the plugin's required metadata fields, and update the config GUI
panel.
o This should also set the plugin's "Enabled" property if an appropriate xml field is
located for the plugin's instrument.
e ParsePacket
o Parse areal-time data packet if it matches the plugin's expected format, and
display the results on the config control.
o This could be (but currently isn't) called from an alternate thread, so use
Begininvoke when updating the data view GUI panel.
o Use the PluginHelper class from PluginReference for IntFromMSBHexString
e OutputCSVMetadatalines
o Output instrument metadata lines to the top of the CSV file in the format:
= pamel:, valuel
= pame2:, value2
e OutputCSVHeaderSegment
o Output CSV header field names for the plugin's output fields. Please include
units in square brackets at the end of the name. Always start with a leading
comma, and finish without a comma. Example:
= |, fieldnamel [units1], fieldname2 [units2]
e OutputCSVRowSegment
o Output the plugin's data matching the supplied UTC date time in a partial CSV
row (or just output the latest received data).
o The resulting string should be comma separated and begin with a comma, like
this:
= datal, data2, data3

Building and Using

Now the plugin should compile without errors. Make sure the project is targeting .NET
Framework 4.7.2 (check this under the project properties). Building the solution will produce a
.dll file with your plugin’s name in the build output directory. The “Release” build is preferable
(change Visual Studio from Debug to Release build mode and recompile). My .dll file is located
in the folder:

C:\Users\jordan\Documents\Visual Studio
2013\Projects\AllenTestPlugin\AllenTestPlugin\bin\Release

Copy your plugin’s dll file into SkySonde Client’s Plugins folder. On my machine, this is here:
C:\Program Files (x86)\SkySonde Client\Plugins

Now open (or re-open, if already running) SkySonde Client. The “Other” tab should display your
new plugin and its configuration control/panel:

SkySonde Client Configuration 1.1.7.7 = —

i GRUAN |

Instrument Plugins Available (check to enable instrument):

W AlenTest

[Anasphere SLWC

[] ETH COBALD |ﬂ
[] NOAA Valve Cutter

[] MetOne OPC -

AllenTest Corfiguration

Serial Number:

Multiple Instruments Configuration

Daisy Chain Index: Any -

I.P-.test instrument by Allen

Factony Defaults

After checking the box by the plugin name and typing in a serial number, then setting up the
rest of the SkySonde Client config fields, pressing OK will show the plugin data window.

After connecting the plugin instrument to an iMet and starting transmission, the data are
displayed and saved to the output CSV file:

Plugin Instrument Data

AlenTest
AlenTest Data
Temperature: 2245 [deg C]
Pressure: 83522 [mb]

@ skySonde Server 1021

[=

OO0 @

Connected Clients:

File Edit DataScurce Optiens Help
Data Reception Status
FTU PTUX GPS GPSX XDATA

O

Status Messages:

127.0.0.1:61157

PTU(X) Received/Expected: 15/15

140172193125:1234

Window Opacity: (100 [%

Q SkySonde Client L.1.7.7 - allentestl {Ascent) = Bs
File Options Help
Radiosonde Plots Hygrometer Plots
[F] Attitude: 1741 [m] [] Frost Coverage nfa [ADC]
[Pressure 83444 [mb] [C] Fitered Frost Cov. nfa [ADC]
[Air Temp. 2183 [degc] [Tl Sunlight n/a [ADC]
[] Pet. Temp 310634 [[Wimor Heat nja [PWM)
7] Humidity 1544 [zRH] [Humidty nfa % RH]
[Frostpoint Temp. -491 [deg C] [T Frostpoint Temp. n/a [d=g C]
[] H20 Miing Ratio 486626 [ppmv] [T H20 Moing Ratio n/a lppmv]
[TetalColH20 0.00 pmp [TetlCllH0 /2 el
[biomal Terp. 3083 [deg] || [OPtics ook Tenp. nfa ea Cl
[Battery Voltage 3.90 v 7] Artude nfa fm
[Ascent Rate 0.08 e | [EErs 7 fmt]
|| Pres. Sensor Temp. nfa [dea C]
Ozonesonde Plots (sonde #: n/a) [Eattery Voltage n/a v
|| Dzone Pattial Pres. nfa [mPa]
|| Ozone Miéng Ratic nfa [ppmv] (La:tfugza 0.
[T] Total Col. Ozone ~ nfa [Du] Longtude 0.00000
Total Col. w/Br. nfa DU Aliude: 0.0 m]
£ Tota s D Pressure: 99999 [mb]
[T Cell Cument nfa [uA] Mum. Sats: 0
[] Pump Temp. nfa [degC] ~ GPS Time: 00:00 [GMT]
P . - Wind Speed: 99999 [m/s]
Lo nfa [mA] Wind Direction 99999 [deq]
[Battery Voitage nfa v Ascent Rate: 99999 [m/s]
Heading: 99999 [Deg]
Toue Elev. Angle: 99999 [Deq]
Gieri Tane 170706 [GMT] E‘r::”::'d_ . ggggg k]
. £ nding Lat
Elapsed Time: 185355 Pred. Landing Lo 99999
FTU FTUX GFS GPSX 03 H20 Other Time to Landing: 99999 [min]
OO0 OO e

Enable Data Plotting
Enable Data Display

This demo project is available for download on the NOAA OZWYV Software Download website.

